PHYSICAL REVIEW E

VOLUME 48, NUMBER 2

AUGUST 1993

Linear-solvability condition in the Saffman-Taylor problem

Eugenia Corvera
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building,
8600 University Street, Montréal, Québec, Canada H3A 2T8
(Received 10 February 1993)

A reexamination of part of the mathematical framework of linear-solvability theory in the context
of Hele-Shaw flow is made. The WKB solution of the problem is extended to include the infinite
series of the expansion, instead of the first two terms as was originally done. The prefactor of the
cusp function is found to change by about 5%. This is to be compared with the local geometrical
model for dendritic growth, where the extended theory predicts a dramatic improvement.
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I. INTRODUCTION

Interface dynamics far from equilibrium has been a fo-
cus of intense research in recent years [1-3]. This is due
to the practical and theoretical importance of the prob-
lem to the understanding of material-related phenomena.
Of particular theoretical interest is the pattern forma-
tion and selection problem where one wishes to predict
the long-time steady-state pattern following an initial in-
terfacial instability. Specific systems that have received
much attention include two-phase flow in a Hele-Shaw
cell [4], dendritic growth of a crystal from a supercooled
melt [3], directional solidification of a binary alloy [2],
and explosive crystallization [5-7] of an amorphous solid.
Common to these problems is the existence of an unsta-
ble interface driven by an external force. This force may
be provided by the differences in pressure, temperature,
or concentration of matter on the two sides of the in-
terface. Experimentally steady-state patterns of the in-
terface shape have been observed in these systems, and
it was a theoretical challenge to predict these specific
patterns from the equations of motion in question. The
difficulties come from the fact that a boundary condition
for solving the equation of motion depends on time; i.e.,
one must solve a moving boundary problem that is non-
local. A further difficulty is related to a small parameter
of the problem, surface tension, which is associated with
the highest derivative of the equation of motion [1]. Thus
simple perturbative treatment fails.

It was not until quite recently that a theoretical under-
standing of the pattern formation and selection problem
started to take shape. Independently, several groups [8]
focused on the difficulties mentioned above and discov-
ered that a singular perturbation theory combined with
stability analysis might provide an answer to the selec-
tion problem. In particular, it was found that if the sur-
face tension is treated correctly, then the continuously
infinite possible solutions of the equation of motion in
zero-surface-tension break into a discrete set where only
one of the solutions is linearly stable to noise; thus only
this one can survive and be selected by nature. This sce-
nario, termed microscopic solvability, has been applied
to several above-mentioned pattern-forming systems, and
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very interesting results have been obtained [1, 3]. It is
now generally accepted that for the Hele-Shaw flow, this
scenario provides a reasonable solution for interface pat-
terns. For other systems, notably dendritic growth, the
success of solvability theory depends on an additional
small parameter, the anisotropy of the surface tension;
thus some debate still exists in the literature [9]. How-
ever, it is reasonable to say that solvability theory pro-
vides our best understanding of the problem to date.

While qualitative results from solvability theory are
consistent with those of observations, detailed compar-
isons are hard to make due to experimental difficulties
in accurately determining system parameters. There is
some success in comparing theory with numerical solu-
tions of the equations of motion [10], but the latter are
often hampered by numerical difficulties since the prob-
lem is inherently nonlinear and nonlocal. Even for sim-
pler models, such as the geometrical model where nonlo-
cality is completely neglected, disagreement has existed
between the theory and numerics on the prefactors of the
cusp function (see below). Thus it is desirable to carefully
reexamine various mathematical approximations made in
the original proposals of solvability theory and possibly
improve it systematically.

The purpose of this paper is to provide a reexamina-
tion of a particular part of the mathematical framework
of solvability theory in the context of the Hele-Shaw flow,
where a full nonlocal model must be solved. The pref-
actor of the cusp function is recomputed to include all
nonlinear terms at the level of a WKB approximation
(see below), rather than just the leading term, as was
done originally for simplicity. For the local geometrical
model, Hakim [11] recently showed that such a procedure
will dramatically improve the agreement between theory
and numerical solution. For the Hele-Shaw-flow problem,
a 5% numerical difference is found between this extended
method and the original theory. The paper is organized
as follows. In Sec. II, for completeness of the presen-
tation, the fundamental equations of interest are set up
and a brief review of solvability theory in connection to
the prefactor of the cusp function is made. Section III
is devoted to the calculation of the prefactor of the cusp
function with this extended method, and Sec. IV is re-
served for a short conclusion.
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II. THE SAFFMAN-TAYLOR PROBLEM

The Saffman-Taylor problem [4] is the prediction of
the steady-state shape of the fluid interface in a two-
phase flow confined in a linear Hele-Shaw cell, where a
less viscous fluid is pushing a more viscous one. It can
be regarded as a model of, say, water pushing oil in a
porous medium. The understanding of this problem is
important, since it represents a class of pattern-forming
systems where interfacial instabilities evolve and steady-
state patterns are selected by nature.

The instability in the linear Hele-Shaw flow is the well-
known Mullins-Sekerka instability [12], where the inter-
facial tension at the fluid interface is unable to stabilize
long-wavelength fluctuations; thus the interface deforms
from flat as the flow continues. Different modes grow and
compete dynamically. The competition leads eventually
to a single finger-shaped pattern in the Hele-Shaw cell
at large times [13]. This shape is called a viscous finger.
Experimentally [4, 14], the finger is characterized by its
width A in units of the channel width W. It is found that
A is usually greater than one-half of the channel width.
Also, A is a unique function of a control parameter ~y, and
approaches -%W as v — 0. The parameter 7 is defined as

5 (b\?
1= (5) , (1)

where 4 is the interfacial tension, p is the viscosity of
the fluid that is being pushed, b is the gap spacing of the
Hele-Shaw cell, 2a = W is the channel width, and v, is
the velocity of the fluid very far from the interface.

Theoretically, the governing equation of the system can
be written from Darcy’s law [4], which relates the flow
velocity v with the pressure p,

b2

vV = _—i?[;vp (2)

This and the assumption of incompressibility of fluids
lead to the Laplace equation for the pressure,

V2p = 0. (3)

The conservation of matter at the interface and the
Gibbs-Thompson relation provide the necessary bound-
ary conditions,

b2
Un = —MVP ‘n (4)
and
b= —"7'{/: (5)

where fi is the normal to the interface and « is the local
curvature. The difficulty of solving these equations lies
J

at the moving boundary condition (5), where x depends
on the solution of the problem, which is unknown. If
we neglect the small parameter interfacial tension ¥, the
problem can then be solved in a closed form [1]. How-
ever, in that case one can only predict a combination of
the finger width A and the flow velocity v, not each sepa-
rately; thus a continuous family of solutions exists. It can
further be shown [1] that any finite perturbation treat-
ment to include + fails due to the fact that v appears as
the coefficient of the highest derivative in a different form
of the equation of motion. A selection scenario is given
by solvability theory, part of which we review briefly in
connection with the prefactor of the cusp function.

Equations (3), (4), and (5) can be transformed into an
integro-differential equation. After linearizing around the
zero-surface-tension solution [15] and assuming a sym-
metric shape for the viscous finger, this equation can be
written as

V20 4 umetm)

+_71?/_wd ) Q2(n, 77)9(")=R(n), (6)

n—n

where v = 771'2(17)‘)\57, ©(7n) is an antisymmetric function
of its argument, and

4B%4(1 +7?)3%

Qi(n) = T+ 3P (7)
N 4nBtA 4+ n?)i(1+n?)i

QZ(T”T’ ) - (1 + ,827]2)%(1 + 5277’2)% ) (8)

3+ B3(n? —2)]
RO = i s ¥ ©
and

A

f=1=x

In terms of Cartesian coordinates, 7 is the slope, which
varies from —oo to oo as one goes all the way around
the finger, passing through n = 0 at the tip of the fin-
ger. In terms of the angle of orientation of the interface,
0 = 6y + v, with 6 the zero-surface-tension solution of
the problem,

(1+ B8/

O(n) = mﬁ—%(n)-
Equation (6) has the form
£6(n) = R(n). (10)

Multiplying by a function ©( and integrating leads, after
some algebraic manipulation, to the following equation:

/0 dn©o(n)LO(n) = [BvO’ — OvO]|2 / dne(n)ud 90(77)
0 0 ,
+L dne(n)Ql(n)Go(nH/_ dn©(n)= {/ d '9@?&@} (11)
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where ©¢(—n) = —6¢(n). We define an operator L such
that

2
Ltey = V%oz(n) + Q1(7)©0(n)

[} / /
41 / dn’' 92(’7’,’7)—90(77), (12)
T J-o n—-n
Now, if we can find a solution to the equation
L'6g =0, (13)

all the integrals on the right-hand side of Eq. (11) will
vanish. Using (10), we obtain

0 0
[ daneoce = [ dneqrm)
—o0 —o0

=[O0’ —6yvO]|% .. (14)

The cusp function is defined as
o0
A= / dn©oR(n). (15)
-0

It is the vanishing of the cusp function that gives

the condition for the selection of the pattern. Since
R(—n) = —R(n), A can be written as
A =2[0,8" — 6ol .. (16)

What one does next is to find a null eigenvector of the
operator L, i.e., find a solution to (13). Suppose that

the solutions of (13) have the WKB form eVSV, where
the real part of S < 0, and S has points of stationary
phase [i.e., points where S’(7j) = 0]. Then, in the limit
of v — 0, the integral can be evaluated by expanding
the exponent around the point of stationary phase. The
only contribution to the integral that is not exponentially
small comes from the pole at n' = 7, and the equation
for the null eigenvector of L' becomes

26
Vo0 1 Qu60.(m) =0, a7)

where

4841 £ in)3 (1 F in)?
T+ FPrP)?

The null eigenvector O is given by the antisymmetric

combination of Gy,

Qx(n) = (18)

1
Oy = % [60+ - 90_] = ImOq, . (19)

As mentioned above, one searches for a WKB solution,
i.e., ©¢ ~ exp(S/+/v), where S can be expanded in pow-

ers of \/v,
S=> St (20)
n=0

In the formulation of Hong and Langer [15], only the first
two terms of this expansion were included. That led to,
for 52 < 1,

I 2 A A T -
A\ V)~ N =) V13/2se , (21)
where N = 2.008 and
1 1 —u)3/4(1 + u)V/4
E()\) = —282 /0 du ( 1) - [(32“2 ) . (22)

A point worth noting is that the prefactor of A, N, is
not uniquely determined since one can multiply the null
eigenvector of the operator £! by any quantity indepen-
dent of n without changing Eq. (13). But since we are in-
terested in this prefactor, proper normalization is Reeded.
The prefactors of quantities such as oo or ol are

olei
uniquely determined. Alternatively, the m;rmalization of
the null eigenvector or its derivative will make A uniquely
determined. This was done by Hakim for the geometrical
model [11].

As mentioned above, at the tip of the viscous finger
we have © = 6;, where 6; is the v-dependent part of
the exact solution of the shape, i.e., § = 6y + v6;, where
6o is the zero-surface-tension solution. Thus at the tip,
6 + % = v0i|tip, which is given by the normalized cusp
function,

Jp—

= 260w —v8 |gip = —01tip,
ip

provided that we set G'Itip = 0. Also, note that the term
at » — —oo in (16) vanishes [15]. Following Hong and
Langer [15], © = ImOy, is given by

S
es

= i1
+

o,

and since Sj = z'Q_l‘_/z, 9;)+|ﬁp = i%ﬂ—+ (nondominant
terms). The normalized cusp function can be written as

oy)\1/14
A= MQ_/\QJ%_VW%%?, (23)

where M = %-5 =0.71.

In Sec. III, we shall recompute the prefactor M includ-
ing all the terms in the WKB expansion (20). For the
geometrical model of dendritic growth where no nonlo-
cality is involved, Hakim recently showed that including

all terms of the WKB series drastically improved the nu-
merical value of the prefactor.

III. MATHEMATICAL REEXAMINATION

To include the whole series of the WKB expansion (20),
we propose a solution for the null eigenvector of L of the
form

S, e n
O =¥ Zgnu‘f. (24)
=0

This is equivalent to (20). In the following, we denote
O, by ©¢ and Q4 by Q. Substituting this into (17), we
obtain
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(S + Q)go+ [(S2 + Q)91 + (2Shgb + Sigo) v

+ Z [gm, + (53 + Q)gm+2
m=0
+(2549m41 + SHgm+1)vT T =0.  (25)

Equating terms with the same power in v, we have

(a) (Sg +Q)go =0,
(b) (S22 + Q)g1 + (2Shgh + Sigo) = 0,

() g + (S22 + Q)gm+2 + (2549 41 + St gm+1) =0,

which gives a set of equations for So, go, g1, -, gn-
From (a), we have S22 + Q =0, so

so=i [ dn@?, (26)

0
and
6[
! — =
(b) 90 + 2S(’) g0 0,
Sy 1
(€) Gm+1 + Zg‘ggm“ = —'2—3—69;2-

Since Sp has a point of stationary phase at 7 = i, we
evaluate our equations in the immediate neighborhood
of 7. Let n = ¢ + w, then

4:3/261/2
Q ~ aw®/?, where a = éf—lz—Tz)r’
Sy 1Q 3
25(,), = Z% ~ gw_l and 28} = 2ia'/%w%/4,
[

The equations around 7 become

3
(b) 9o+ zw g0 =0,

8
3 _ 1
(€) Gm+1 + i Ymi1 = _ngr
From (b) we obtain
g0 = agw™3/8, (27)

and (c) gives a recursive relation for the rest of the g,’s.
It is just a first-order equation of the form ¢’ + Fg = G
whose solution is g = gp [ dw y%, where g, = e~ JWwF,
The solution for gn, 41 is then given in terms of g,, by

Im+1 =w"‘B/dww"“g£$., (28)

with A = 3/8 and B = —1/2ia!/2. It is clear that if g,,
has the form g,, = apmw™*", gmy1 will have the same
form. And since go has the form gg = agw™4°, with
Ap = 3/8, all we need to do is to find a recursive relation
among the coefficients. When the form g,, = apw=4" is

put into (28), we find
BAm(Am + l)am w—(Am+

—-A
Im+1 = D= Amp1w” T,

A-A,
(29)
Comparison of the exponents of w determines A,,
7
Am = gm + Ao, (30)

and comparison of the multiplicative coefficients deter-
mines a,,

e ()

S
For consistency, we need to expand e and R around
the point of stationary phase 7. Using Egs. (18) and (26),
So can be approximated as

mI(m+ &)T(m + 1
3 11 ao

(31)

2
8 or/ar/a_A" 1/ (32)

So = B + 3 5w

where w = 7 —1 and E()) is given by (22). We can write
oxXw /
e% = eg%ze%f:’

where

=° 21/4 7/4_ N A2

T 1-—2)\°
With the above results, (24) becomes

o0
m aw?/4
B¢ = eV Z amrvEFw im0 (33)
m=0

and R, given by Eq. (9), becomes
R=bw 94,

where

34-5/4 34=5/4 (1 — 2))1/2
b= 7 (1_ﬂ2)1/2= 71 ( —)
29/ 29/ (1-X)

We now can write the cusp function defined in (15).
Note that in this section ©¢ denotes O, , thus

/ dwOoR(n) = —be—é')' Zamu'f]m,

m=0

(34)

where I, is defined as

Im_/ dww=im+3) =7

7/4

which can be written in terms of the inverse of a I" func-
tion as

I _81ri<a)m+%% 1
™o\ D(m+ %)’
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The cusp function can then be written as

A [8777%1,0[13/14 ] %JA

13/28

where

A_aoza (m+27

14
F(14)F( 1) 5 Z [2]

Equation (31) has been used to write the second equal-
ity. ap is chosen to be consistent with Hong and Langer’s
calculation [15]. There is an overall constant that is irrel-
evant since what is uniquely determined is the normalized
cusp function. To compare with the original calculation,
we set ag to agree with the result of Hong and Langer (21)
when only the term m = 0 in (35) is considered. We have

T'(m + 14)I‘(m+
T(m+ )l(m + %

(35)

(L =20)/148/T /< 27
A=N (1-X) e AT i
where
922/7

Hence the quantity AF( g 4) gives a multiplicative factor
that tells us how different this result is from the result
where only two terms in Eq. (20) are kept. So, when
setting m = 0, AI'(%) = 1 and the result of Eq. (21) is
recovered. Fmally, the uniquely determined cusp func-
tion A’ is

1—2))1/14
AI — NI( Al/‘? 1/28 +2 (36)

Here N’ = MAT(%). The factor A, given by (35), is
computed numerically and P( )A = 1.054 is found, so
N’ = 0.748. Thus including all terms in the WKB ex-
pansion leads to a 5% change in the prefactor.

IV. CONCLUSION

We have reexamined part of the mathematical frame-
work of solvability theory in the context of Hele-Shaw-
flow. The prefactor of the cusp function is recomputed
to include all nonlinear terms for the null eigenvector of
the operator £ (13), rather than just the leading term
as done originally by Hong and Langer. For the Hele-
Shaw-flow problem, a 5% numerical difference is found
between the present method and the original theory. As
a comparison, for the geometrical model a factor of about
100% was found by Hakim. Of course there is no a prior:
reason that a similar numerical factor should be obtained
for the two problems. There is so far no numerical cal-
culation of the prefactor for the Hele-Shaw-flow problem.
We believe that such a calculation can offer insight to the
quantitativeness of the solvability theory.
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